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Abstract

We present a game theoretic model of the interaction be-
tween an attacker and a system administrator. The model
is general and can be applied at both the strategic as well
as the operational level. It accounts separately for the pos-
sibility of an attack succeeded as well as the possibility
that the attack evades detection by the system administra-
tor. The main result is that, for a general class of models,
the optimal strategy for the defender can be chosen inde-
pendently of the attacker.
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1 Introduction

What is the “optimal” method to defend a computer infor-
mation system from an attack? An information system in
this context can represent a single computer, a database,
or even a geographically dispersed network. There are
many technical things that can be done to improve secu-
rity of an information system. Possibilities include fire-
walling systems, strengthening access controls, or imple-
menting and reviewing the data provided by an intrusion

detection system. However each of these comes at a cost,
in terms of money, personnel, time, and training. The “op-
timal” solution then gives the best balance of risk versus
cost. This is our question: What is the right level of infor-
mation security for an enterprise or organization?

In this paper, we present a general framework to ana-
lyze these decisions using ideas from game theory. Game
theory has long been used to analyze strategies for clas-
sical games like chess [37], and it is also successful in
analyzing games with incomplete information like poker
[7]. Game theory has been used to solve diverse prob-
lems of practical interest which include increasing rev-
enue from the sale of the spectrum for the Federal Com-
munications Commission [29], modeling military appli-
cations from disarmament [6] and national security [10] to
warfare [23] and air combat [19], and determining pricing
for the telecommunications industry [39].

In this paper, we create game theoretic models that
describe the interaction between an attacker and a de-
fender. These models can be interpreted at two basic lev-
els: a strategic level and at an operational level. At the
strategic level, the main question for an organization is
to determine the optimal investment in information secu-
rity. Too little, and one is open to loss and liability; too
much and money has been wasted. We model this as a
game between an attacker and a defender. The attacker
wants to compromise the security of the information sys-



tem while the defender attempts to construct policies and
deploy equipment, people, and resources to prevent such
a breach. One can then ask what is the optimal balance
between cost and capability for the defender.

A similar set of questions obtains at the operational
level. Here a network or security administrator needs to
protect a particular resource; for example a database sys-
tem or a web server. How should the administrator re-
spond to the alerts of the intrusion detection system? Dif-
ferent responses have different effectiveness and costs.

Despite the different scales of these questions, they
have a number of common elements, and these common
elements are the focus of this work. We propose a general
model where each attack and each defensive posture have
three associated elements

e the chance an attack succeeds,
e the chance an attack evades detection, and

e the costs necessary to either launch the attack or to
adopt that defensive posture.

To keep the model as generally applicable as possible,
these are the only three features that we model.

The chance of success for a given attack depends on
both the particular attack and the particular defense cho-
sen. We assume that each attack has a strength which
represents the likelihood that the attack would succeed
against an average target. Similarly, we also assume that
each defensive posture has a strength which gives the like-
lihood that an average attack would succeed against that
posture. Then the probability that a given (non-average)
attack would succeed agains a given (non-average) de-
fensive posture is modeled. We consider both linear and
non-linear models for this process, and we show that, for
attacks and defensive postures near the average, that the
linear model is a good approximation for a large class of
nonlinear models.

We handle the chances that an attack evades detection
in the same fashion; we assume that each attack has an
evasiveness that describes the probability that the attack
would go undetected against an average target. Similarly,
we associate an evasiveness to each defensive posture that
gives the likelihood that this defense would allow an av-
erage attack to evade detection.

We also assume that each attack or defensive posture
has an associated cost. This cost can be financial- model-
ing costs of time and equipment, for example. It also in-
cludes costs to an organization in lost productivity caused
by more stringent security requirements.

We explicitly assume that both the attacker and the de-
fender have multiple objectives in this game. The attacker
wants the attack to succeed, to evade detection and to do
so at minimal cost. Similarly, the defender wants the at-
tack to fail, to detect the attack, and to do so at minimal
cost. As a consequence, we model the interaction as a
multi-objective game. Each player is trying to maximize
a payoff function that is a linear combination of the suc-
cess probability, evasion probability and cost. The precise
linear combination is chosen by each player to reflect the
relative weight that they place on each component. This
enables our model to examine how an organization might
balance investments in protective tools, like firewalls and
encryption, versus investments in detection tools, like in-
trusion detection systems.

Our main result is that, for attacks and defenses near
the average, the optimal strategy for each player can be
determined by analyzing the relative weights assigned to
the various components by that player; the objectives or
capabilities play no role. As a corollary, we also show that
investments in detection tools do not deter an attacker bent
on attacking an organization into using more evasive but
less powerful attacks.

2 Previous Work

Some of the first efforts to apply game theory to com-
puter security were [20, 21] who took a very high level
approach to the question. Alpcan and Basar in [3] mod-
eled the interaction between an attacker and an intrusion
detection system. In their work, the attacker chooses ei-
ther a system to attack or to not attack at all, while the
defending intrusion detection system chooses either to set
off an alarm or not. In particular, this model explicitly al-
lows for the possibility of false alarms. The model does
not account for attacks of differing likelihoods of success
however. The authors found that, in this case, the Nash
equilibrium solutions depend only on the cost function of
their opponent. This work was extended in [4], including
allowing multiple attackers.



Lye and Wing [28] present a model at the operational
level. They examine attacks on a web server and on an ftp
server, and include detailed maps of the possible states
of both the attacker and the administrator, together with
estimates of the rewards and transition probabilities for
each state. The authors then compute the corresponding
Nash equilibria of the game. This approach has its share
of difficulties however. First is the difficulty of determin-
ing what are the rewards and transition probabilities for
a given state. There is also the problem of completeness;
since this low level model is meant to account for all of
the possible actions of both the defender and the adminis-
trator, any state that can occur but is not modelled will be
a source of error.

Liu, Zang and Yu [27] focus more on analyzing the
attackers intent, objective and strategies, rather than on
finding optimal defender strategies. They assume that the
attacker’s behavior is rational, and that it can be modeled
by examining incentives and costs. Incentives are mea-
sured, for example, by comparing the degraded state of a
network undergoing a DoS attack to the undegraded state.
Costs include financial costs as well as constraints and
measures of risk. They too use a low level model of at-
tacks; for example they split the Mstream DDoS attack
into five phases for each zombie. Their emphasis is on
techniques to learn what the attacker’s strategy might be.
Because of the low level nature of the model, it is difficult
to draw general conclusions. For example, they present
a nice application of their method to a DDoS attack, but
find 42 different Nash equilibria.

A number of different authors have examined the diffi-
cult problem of modeling attacks at an operational level.
These include [31, 32, 33], who examine alerts to con-
struct potential attacker strategies. Sheyner et.al. [36]
use symbolic model checking algorithms to generate at-
tack graphs. Cuppens and Miége [13] describe a method
to correlate different alerts from different intrusion detec-
tion systems. Templeton and Levitt [38] describe an at-
tack language called JIGSAW that describes and models
attacks.

Bistarelli, Fioravanti, and Peretti [8] examine “defense
trees” as the defensive counterpart to attack trees and de-
scribe how to analyze the financial costs of various coun-
termeasures, including examining the resulting return on
investment of different defensive techniques.

Kotenko and Stepashkin [25] model attacks with the

goal of improving vulnerability assessment; we also men-
tion Liu and Li [26] who use game theory to predict po-
tential attacks.

At the strategic level, we have the analysis of Gordon
and Loeb [16]. In their work, they construct a model to
determine the optimal investment in security to protect a
given set of information. They use two different mod-
els to calculate the expected benefit of an investment in
information security. Additional models were studied by
Hausken [22] and the results extended by Willemson [40].
For additional analysis of the economic costs of security
at the strategic level, see also [9, 11, 12, 15, 17, 18].

Neubauer, Stummer and Weippl [30] have constructed
a mathematical model to evaluate the costs and expected
benefits of investments in security. In particular, when
examining losses they look at both monetary losses as
well as losses to the corporate image, while when ex-
amining defensive postures, they account for acceptance
costs, setup manpower, setup time, setup costs, and run-
ning costs.

Other applications of game theory to computer security
include [1, 2, 35].

3 Review of Game Theory

Because we rely heavily on game theory in what follows,
we shall briefly recap some of the salient features of the
theory that we require in what follows. Solid introduc-
tions to the subject can be found in [5, 14, 34].

Consider a two player game between players A and D.
It has two components; first is a pair of sets S4, Sp, called
the pure strategy sets for each player. They represent the
collection of actions each player is allowed to make. The
second component is a pair of functions 74, mp, called
payoff functions. Given a pair of strategy choices, one for
each player, the payoff function 74 represents the value
of that pair of choices to player A; the function 7p does
does the same thing for player D.

If the strategy sets S4 and Sp of both players are fi-
nite, then the result is called a bimatrix game. Indeed, if
player A has strategies {a1,as, ..., a,, } while player D
has strategies {d1, da, . ..,d,}, then we can construct the



pair of matrices

7TA(G'17d1) ﬂ—A(aladZ) T(-A(a17dn)
ma(az,di)  ma(az,ds) ma(az,dy)

TA = . . .
| ma(@m,d1)  Ta(am,dz) TA(m, dy)
[ 7p(ar,di)  7p(ar,ds) mp(ai,dy)
mp(az,d1) mplasz,ds) mp(az, dy)

™D = . . .
| ™o (am,d1) 7Tp(am,ds) Tp(am, dy)

that describe the payoffs for the game.

In the game, both players act to maximize their own
payoff function. However, they do not necessarily try to
minimize the payoff of their opponent.

In many games, players do not want to act in a deter-
ministic fashion, as this behavior may be anticipated by
their opponent. Instead, many times the best choice is
to choose different pure strategies randomly. A mixed
strategy is a probability density function defined on a pure
strategy set. Let « be a mixed strategy for player A, and
y a mixed strategy for player D; we then let 74 (z, y) and
mp(x,y) represent the expected payoffs to players A and
D. In the simple case of a bimatrix game, the mixed
strategies are vectors x and y with >~ x; = > y; = 1,
where x; is the probability of player A choosing strategy
i and y; is the probability that player D chooses strategy
7. Further, the payoff functions for the mixed strategies
can be found by matrix multiplication

TA (Xa Y) = XTﬂ.AY7
TD (Xa Y) = XTTFDy'

A Nash equilibrium is a pair of mixed strategies (&, §)
so that neither side can unilaterally improve their own ex-
pected payoff by choosing a different strategy. In particu-
lar, for any different strategy x for player A we have

ma(2,9) > ma(z,9).
Similarly, for any different strategy y for player D, we
have

Tp(Z, ) = 7p(Z,y)-
Every bimatrix game has a Nash equilibrium in mixed

strategies, as do more general games with some reason-
able assumptions on the strategy sets S4, Sp, and the

payoff functions w4, mp [14, Thm. 1.1, 1.2]. Although
the existence of a Nash equilibrium is guaranteed, the
Nash equilibrium is not necessarily unique. It should also
be noted that other notions of equilibrium solution exist;
c.f. [34, Chp. VII].

4 The Model

4.1 Features

As described in the introduction, we would like to create
an abstract model with a wide range of validity. To that
end, we suppose only that each attack a can be character-
ized by exactly two components a = (as, a.). The num-
ber as, the attack’s strength, represents the probability
that the attack, when launched against an “average” tar-
get will succeed. The number a., the attack’s evasiveness,
represents the probability that the attack, when launched
against an “average” system, will evade detection.

We also assume that there is a function C'4 (a) that rep-
resents the relative cost to the attacker for performing the
attack a. This represents the time, effort, and energy that
the attacker needs to expend to implement the attack a.

We also assume that each posture d that the defender
can take can be characterized by two components d =
(ds,d.). Here dg is the strength of the defense, which
represents the probability that an “average” attack will
succeed while d, is the probability that an “average” at-
tack will evade detection. Note that increasing values of
dg correspond to increasing chances of success for the at-
tacker, and increasing values of d, correspond to increas-
ing chances of evasion for the attacker; thus the defender
wants these values to be as small as possible.

We also assume that there is a cost function Cp(d)
that represents the relative cost to the defender of adopt-
ing posture d. This cost includes direct financial costs of
equipment as well as the value of the time and work of the
network staff. In addition, this also includes any decrease
in the usability of the system caused by the use of more
stringent security.

Both the attacker and defender have three different ob-
jectives. The attacker wants the attack to succeed, to
evade detection, and to do so at minimal cost. On the other
hand, the defender wants to prevent the success of the at-
tack, to detect the attack, and to do so at minimal cost.



For a given attack a, and defense d, let P,(a,d) give the
probability that this attack will succeed against this de-
fense; similarly let P.(a,d) give the probability that this
attack will avoid detection against this defense. The goal
of the attacker is to maximize the payoff function

ma(a,d) = A;Ps(a,d) + A.P.(a,d) — A.Cx(a)

where Ag, A, and A, are positive weights that give the
relative importance of success, evasion, and cost. Simi-
larly, the goal of the defender is to maximize the payoff
function

mp(a,d) = —D,P,(a,d) — D.P.(a,d) — D.Cp(d)

where again Dy, D, and D, are positive weights.

Because we are interested in the maxima of w4 and 7p
rather than their precise values, we can assume without
loss of generality that A. = D. = 1. Then if the cost
functions C'4(a) and Cp(d) return the monetary cost of
a strategy, then A, represents the monetary benefit to the
attacker of successful attack while D; is the correspond-
ing monetary loss to the defender of a successful attack.
Similarly, A. represents the monetary benefit of the at-
tack remaining undetected while D, is the monetary loss
of an attack remaining undetected. Of course, we need
not assume that either C,(a) or Cy(d) represent mone-
tary values; in fact for an attacker motivated by notoriety,
bravado, or boredom, the use of a monetary measures for
C,(a) and 74(a, d) are probably inapproptiate.

4.2 Success probabilities

To proceed, we need to construct a model for the proba-
bility functions Ps and P.. To begin, we assume that the
success probability depends only on the attack strength
and the defenders strength; in other words that it is inde-
pendent of the corresponding costs and evasiveness. Thus
Pi(a,d) = Ps(as,ds). Similarly, we assume that the
probability of evading detection depends only on a. and
de so that P.(a,d) = P.(a.,d.).

Temporarily dropping subscripts for readability, let
P(a,d) be the probability that an attack with strength a
against a target with defense d will succeed. The defini-
tion of a and d tells us the probability of success when
either a is the strength of an average attack, or d is the
strength of the average defense. However, we do not know

what those values are. If we let @ and d denote the strength
of the average attack and the average defense, then the
definition of a and d then implies that

for any a and d. In particular, setting ¢ = a in the above,
we see that @ = d.

To continue, let us begin by choosing the simplest form
for P; namely that it is linear. Suppose that

la,d)=a+ (a—a)+ (d—a);
we would like to model P by
P(a,d) = {(a,d)

forall 0 < a < 1and 0 < d < 1. However, this is
impossible, as this gives us values of P(a,d) > 1 for
a+d—a>1land P(a,d) <0fora+d—a<0.

Rather than change the simple algebraic form of P, we
instead restrict the domain of allowable choices for (a, d).
We start by insisting that 0 < a +d —a < 1. In par-
ticular, we are eliminating from consideration scenarios
where the attacker applies an attack much stronger than
average to a defense that is much weaker than average.

Next, we note that the attacker and the defender choose
their strategies independently. As a consequence, if a*
is an allowable attack strategy against a defense d*, then
it must be an allowable attack strategy against any other
allowable defense d. In particular, this implies that the
set of allowable strategy pairs (a, d) must be rectangular.
Combining this with the restriction 0 < a +d —a < 1,
we use the model

P(a,d) ={l(a,d)=a+ (a—a)+(d—a) (1)

in the region

D={(a,d): 3a<a,d<3+3ia}

This choice of domain D implies that almost every
choice of attack and defensive posture is neither guaran-
teed to succeed nor to fail. In fact only the combination
a = d = a/2 is guaranteed to fail and only the combi-

nation a = d = a/2 4 1/2, is guaranteed to succeed.
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Moreover, D is the largest rectangular domain where al-
most every choice of (a, d) is neither assured of success
or failure.

Although this description shows how to find the success
probability of an attack with strength a against a defense
with strength d, the same argument can be applied to find
the probability that an attacker will evade detection. As a
consequence, we obtain the linear model

s + (as - ds) + (ds - aS)
e + (ae - de) + (de - ae)
for

(as,ds) € Dy ={(a,d) : & d<i+1a,} (2a)
(ae,de) € D, = {(a,d) : %de <a,d< % + %(’16} (2b)

where a is the strength of the average attack and a. is the
evasiveness of the average attack.

Before we explore the consequences of this linear
model for the probabilities P(a,d), we would like to
briefly consider the possibility of a nonlinear form for P.
We can, for example, look at choices of P of the form

P(a,d) ={(a,d)+o(a—a,d—d)

where o is a nonlinear correction term. However, this cor-
rection cannot be chosen arbitrarily; there are three sig-
nificant conditions that a model, linear or nonlinear, must
satisfy.

First, because of the definition of a and d, we know
that P(a,d) = ¢(a,d) when either a = a or d = a. Fur-
ther, because P is to represent a probability, we must have
0 < P(a,d) <1 for all (a,d) in the domain of definition
of P. Finally, P(a,d) must be monotone non-decreasing
in a and in d. Indeed, since P(a,d) is the probability of
success, increasing the strength of the attack and keeping
the defense constant must not decrease the success prob-
ability. As a consequence we must have %—5 > 0 and
- > 0.
ad =

As an example of the effect of these conditions, we
have proven (Proposition 1) that there is no nonlinear
quadratic choice of P that meets all of these conditions on
the same domain D that we have used in the linear model.
To find a nonlinear quadratic model, we must reduce the
size of the domain of definition of P. The domain D is
a square of side length 3, so consider D}, = {(a,d) :
a—%5a<a,d<a+ 5(1—a)} which is a square where
the side length has been multiplied by the factor p. We
have shown (Proposition 2) that, in this case,

|P(a,d) — €(a,d)| < (1 — p) min{a, 1 — a}.

As a consequence, if, for example, we reduce the side
length of the domain of definition by 10%, then the
difference between the linear model and any nonlinear
quadratic model is no more than 10% of the value of an
average attack. In particular, any quadratic model for P is
either close to the linear model, or has a markedly smaller
domain of definition.

Although quadratic choices of P need to be close to
the linear model, there are non-trivial choices of P that
satisfy all of our conditions (Corollary 3).

4.3 Cost functions

The form of the cost function depends on whether we are
using this game to model the operational problem or the
strategic problem. In the operational case, the form of the
cost function can be based on the actual costs incurred to
adopt a given defensive posture or to make a given attack.

The strategic case is more difficult. We can begin with
the cost functions of Gordon and Loeb [24] as starting
points. That paper contained two models of the relation-
ship between the cost of a defensive posture and the like-
lihood that an attack on that defensive posture would suc-
ceed; they labelled these as type I and type II. Their type



I model yields a cost function of the general form

Ccl(d) = é [(j)w —1

where o > 0 and § > 1. Their type Il model yields a cost
function of the general form

+ Co 3)

c'(d) =

1 {lnd @

— —1| +C
Ind }Jr 0

o
for « > 0; in both cases C represents the cost needed
to obtain an “average” level of security. There are other
models that could also be used; see also [22, 40]. These
cost models assume that the entire benefit of increased
investment in security only decreases the likelihood of
a successful attack; the question of detection is omitted.
Thus, our model requires more sophisticated cost models.
One could construct a cost function that is simply the sum
of terms like (3) and/or (4) for both success and evasion.
However it is likely that investments in protection would
improve detection and vice-versa, which indicates that a
model that separates these costs and then sums them is
deficient.

As we will see, our results are not terribly sensitive to
the precise form of the cost functions C'4(a) and Cp(d).

5 The Games

5.1 Simple bimatrix game

To begin our analysis of these games, we start by assum-
ing that both the attacker and defender only have a finite
number of attacks / defensive postures. In particular, let us
assume that the attacker can only choose from the attacks
{ay,as,...,a,,}, while the defender can choose from
{dy,ds,...,d,}. A mixed strategy for the attacker is
a choice x € R™ with > x; = 1, while a mixed strategy
for the defender is a choice y € R™ with ) y; = 1. Here
x; is the probability that the attacker chooses a;, while y;
is the probability that the defender chooses d;.

In this case the game always has Nash equilibria in pure
strategies. In particular, the pure strategy (a;,d;) is a
Nash equilibrium provided the attacker chooses ¢ so that

Asai,s + Aeai,e -

Ca(a;) &)

is as large as possible and the defender chooses j so that
_Dsdj,s - Dedj,e - OD(d_}) (6)

is as large as possible. Further, the problem has more than
one Nash equilibrium if and only if there is more than
one pair (4,7) at which the maxima of (5) and (6) ob-
tain. In this case, we also obtain Nash equilibria for the
mixed strategies composed of linear combinations of op-
timal pure strategies; together these are all of the Nash
equilibria. The precise details are found in Proposition 4.

A number of practical conclusions follow from these
game theoretic facts. First, the choice of optimum solu-
tion for one side can be determined without any knowl-
edge of the behavior of the opponent. In particular, a de-
fender need not hypothesize about the relative importance
of cost, likelihood of success, and likelihood of detection
for a potential attacker. Instead, the optimal solution for
the defender uses only the relative weights and costs as-
sociated with the defender. It is interesting to note that
this also means that the defender’s optimal strategy is not
affected by the existence of attacks that are unknown to
the defender.

Secondly, a defender might feel that putting increased
effort into detection might deter an attacker into using
stealthier but less effective techniques, thus reducing the
likelihood of a successful attack. However, this is not the
case. Indeed, the attacker’s optimal solution also only de-
pends on parameters associated with the attacker. In par-
ticular, the attacker’s optimal choice can be made without
knowledge of the possible choices for the defender’s pos-
ture.

There are some practical limitations to the significance
of this result however. In the model under consideration,
we have assumed that the attacker will definitely attack
the defender, and that there is only one defender. The
significance of our result then, is that, if the defender has
definitely decided to attack a particular target, then the de-
fender cannot deter the attacker into using a stealthier but
weaker attack by placing more emphasis on attack detec-
tion.

An interesting generalization of this model would be to
allow for an attacker to choose from multiple defenders,
and then analyze the effect of possible deterrence when
the attacker does not have a predetermined target.

Finally, we note that all of these results are proven us-
ing linear models for P; and P.. However, even if the



functions P and P, are nonlinear, then the payoff from
the strategies chosen by using the linear model will be
close to the payoffs for the optimal strategies for the non-
linear model- even though the actual strategies may be
quite different.

Indeed, suppose that

Ps(as;ds) =
Pe(as;ds) =

S(a57d8) + Us(as - a'sads -
e(asyds) + Ue(as - deads

as)
_ ae)
for nonlinear choices o, and o.. Then the payoff func-

tions for a pure strategy for the nonlinear game have the
form

ra(ad) =7 (a,d)+ Na(a,d)  (Ta)
mp(a,d) = 7\ (a,d) + Np(a,d) (7b)

where Wff) (a,d) and ﬂ'g)

linear model

(a,d) are the payoffs from the

771(46)(3’ d) = Al ((13, ds)
+ Al (a57 ds) —Ca (a)
ﬂ-g) (aa d) = _Dsgs(am ds)
- Dege(asa ds) - Cp (a)

(8a)

(8b)

while the nonlinear terms have the form
Na(a,d) = Asos(as — as,ds — as)
+ Aeo'e(as -
Np(a,d) = —Dsos(as —

- Deae(as - a/eu ds - ae)

C_Lea ds - ae)

afsa ds - as)

We have proven (Proposition 5) that the difference in the
payoff the defender receives by using an equilibrium strat-
egy constructed as a solution of the linear game rather
than as an equilibrium of the full nonlinear game is no
larger that the value of |Np|. Since the functions o, o
have been shown to be small if Ps; and P, are quadratic
and the domains of definition of P, and P, are close to
D, and D,, we know that N 4 and Np are both small; thus
the payoff to the defender obtained by using the equilib-
rium from the linear problem is close to the payoff they
would obtain if they used the equilibrium solution to the
full problem.

5.2 The general game

In the previous section, we assumed that both the attacker
and the defender have only a finite number of possible
choices of attacks and defensive postures; this assump-
tion was made only for mathematical simplicity. All of
the results of that section remain valid if we remove this
assumption.

Indeed, let us instead assume that the attacker can
choose any attack a = (a5, a.) in some set S 4, while the
defender can choose any defensive posture d = (d, d.)
in the set Sp. Given the restriction on the choices for a

Attack
Stealthiness

Attack Strength

and d from (2), we know that
Sa,Sp C(as/2,as/2+1/2) X (ae/2,a./2+ 1/2)

Then, the pure strategy of always choosing (a,d) is a
Nash equilibrium if and only if

Asas + Acae. — Ca(a)
and
—Dsds — D.d, — Cp(d)

are as large as possible. Once again, the optimal strategy
for each side can be determined without any knowledge of
the relative weights assigned by the opponent. A precise
statement of this result is given in Proposition 6.



6 Theorems and Proofs

Proposition 1 There are no non-trivial quadratic choices
of P that satisfy 0 < P(a,d) < 1 on the domain D =
{(a,d): ta<a,d<ia+ 3}

Proof: A general quadratic form for P is
P(a,d) = {(a,d)
+ A(a —a)? + B(a—a)(d—a) + C(d —a)>.
The definition of a and d implies that P(a,d) = ¢(a,d)

and P(a,d) = {(a,d); thus A = C = 0 and the general
form is

P(a,d) ={(a,d) + B(a —a)(d — a).

If P has the domain D, then 0 < P(a,

(a,d) € D. However, because ¢(za

d) < 1 for all
a, =

1
2

+3)=1+1iB@a—1)
so that the requirement P < 1 implies B < 0. B

Proposition 2 Let P be any quadratic choice of P satis-
fying 0 < P(a,d) <1 on the domain Dj,. Then

|P(a,d) — £(a,d)| < (1 — p)min{a,1—a}.
Proof: The general quadratic form of P is
P(a,d) =¥(a,d)+ B(a—a)(d —a)

for some choice of B; however B is not arbitrary. Indeed,
because 0 < P < 1on D:‘L, we know

P(@— Ya,a— %a)=a— pa+ 1Bua* >0
so that
waa
Similarly

Pla+ 451 —a),a+45(1—a))
=a+p(l—a)+iBp*(l-a)?<1

so that

A0 —p)
2i—a)
For any choice (a,d) € D;,,

B <

|P(a,d) = l(a,d)| < |B||a—al|d—al.
But [a — al,|d — a|] < min{4a, 5(1 —a)} so that

\P(a, d) - E(avd”

4(1 — 1 1 2
< (zu)max{_,_} [Bmin{&,l—&}} .
W al—aj L2

Corollary 3 The quadratic function P(a,d) = ¢(a,d) +
B(a — a)(d — a) satisfies

1. P(a,d) = {(a,d) fora=aord=a,
2. 0 < P(a,d) < 1forall (a,d) € Dy, and
3. 98 > 0and 95 > 0 forall (a,d) € D},

for any choice of B with

e { _4(;2; 5, mie - a>}

SBSmin{

4(1—p) 2
p*(l—a) paf
Proof: Clearly (1) follows immediately. Direct calcu-

lation shows us that

oP _
%—I‘FB(d*a),

oP _
%fl+B(a—a).

If B > 0, then because we have a —a,d —a > (—u/2)a,
we see that
oP

L

w_
> a,

da 2

so that the condition B < 2/(pa) implies both 22 > 0

and %—5 > 0. Similarly, if B < 0, then because a — a,d —
a < p/2(1 — a), we see that

oP

TP
— >14+B=(1—-
da = + 2( a),

or W _
5q > - By(0-a)



so that the condition B > —2/(u(1 — a)) implies both

%—5 > 0 and 22 5q > 0; thus (3) is proven. With this in

hand, we see that, for any (a,d) € Dj,
Pa+5(1—-a),a+5(1—-a))

< P(a,d) < P(a— 5a,a—

30)
so that (2) follows from the proof of the previous result.
|

Proposition 4 In the linear bimatrix game, the pure strat-
egy formed by choosing (a,d) is a Nash equilibrium if
and only if

Asas + Acae. — Cy(a)

and

—D,d, — D.d. — Cp(d)

are as large as possible.

A mixed strategy is a Nash equilibrium solution if and
only if it is a linear combination of pure strategies that are
themselves Nash equilibrium strategies.

Proof: Suppose that the attacker has m possible at-
tacks a; for i € {1,2,...,m}, while the defender has n
possible defenses d; for j € {1,2,...,n}.

Let S be the matrix of success probabilities, so that

Sij = P(ai,sa dj,s)a 9

and let E be the matrix of evasion probabilities, so that

Eij = P<ai,67 dj’@). (10)

In each case, the attacker chooses the row and the de-
fender chooses the column; thus if x € R™ is a mixed
strategy for the attacker and y € R™ is a mixed strategy
for the defender then the expected success probability is

S = Z Sijl‘iyj = XTSy
4,
and the expected evasion probability is
E = ZEija:iyj = XTEy
@]
The payoff matrix for the attacker then is

A = ASS+AeE*CA

where C is the cost matrix

Ca(ar) Ca(ar) Ca(ar)

C, = OA(a2) CA(aQ) CA(az)
A B e e e

CA (am) CVA (am) CA(am)

Similarly, the payoff matrix for the defender is
™D — —DSS—DCE—CD

where Cp is the cost matrix

Cp(dy) Cp(dsa) Cp(dy)

Ch— Cp(dy) Cp(dy) ... Cp(dy)
D o oo e .« e

C(D (dl) CD (d2) C’D (dn)

The expected payoff for the attacker is

xTray =xT(A,S+ AE — Cu)y
= Z (AsSij + AEij)xiy; —

4,J

Zale'A a;)

so that if we now use the model (1) to substitute for the
matrices S and E in (9) and (10) we find that the payoff is

XTﬂ.Ay = Z(Asai’s + Aeai,e - CA(al))x'L

+Z(Asdj,s +Aedjye)yj (11)
J

— Agas — Acae.

Similarly, the expected payoff for the defender is

x'rpy =x*(~D,S — D.E — Cp)y
= (=D.Si; — DeEyj)wiy; —

0,J

Z ijD

and thus
x'rpy = — Z(Dsam + Dea; e)x;
— Z(Dsdj,s + Dedj’e + CD(dj)yj (12)
J
+ D.as + D.ae..

10



Examining (11), we see that we can maximize the at-
tacker’s expected payoff by choosing ¢ so that

Asai,s + Aeai,e - CA(ai)

is as large as possible and using the pure strategy that al-
ways chooses a;. Moreover, this choice is independent
of the defender’s choice of strategy. Similarly, examining
(12), the defender wants to choose j so that

Dydj s+ D.dj .+ Cp(d;)

is as large as possible.

If there is more than one choice of ¢ or j at which these
maxima are obtained, then any mixed strategy consisting
of linear combinations of these choices will also form a
Nash equilibrium. B

Proposition 5 Let (x,y) be a mixed strategy that forms a
Nash equilibrium for the nonlinear game with payoff func-
tions (7), and let (Z,7) be a strategy that forms a Nash
equilibrium for the linear game with payoff functions (8).
Then the difference in payoff functions satisfies

’xTWAy — kTﬂ%)y‘ < max |Nal,
’XTﬂ'Dy — xTw(Ef)y) < max |Np|.

Proof: Let K be the set of indices so that

Asak:,s + Aeak,e - CA(ak)

is as large as possible for any £ € K. Clearly, the value
of Asay s + Aear,e — Ca(ay) is a constant independent
of k. Further, Proposition 4 implies that £; = 0 for all
i ¢ K. We also note that

(@i, d;) < 7Y (ax, dj) (13)
for any k € K. Indeed
[ ¢
7 (ax, dy) - 7 (2, dy)
= [Asafk,s + Aeak,e - CA(ak)]
- [Asaz}s + Aeaiﬁ - CA(&i)] Z 0.

Similarly, we have ﬂ%)

k, ke K.

(€9

(ag,d;) = m, (ak,d;) for all

11

With these preliminaries completed, we start by notic-
ing that because (x,y) is a Nash equilibrium for the non-
linear problem, that

%Iy <xTmuy.

Now ,
xTry = 5<T7rf4)y + %' Ny,
so that
xTray > )Ewaf)y + %7 Nyy.
On the other hand,

xTray = xTﬂ%)y +xT Ny

= Z ziymy (ai, d;) +xT Nay.
%,J
Thus, using (13), we see that for any £ € K we have

¢
x 4y < Z ziy;mYy (ag, d;) +xT Nay

i,
<>yl ;) +x"Nay.
j
= 0 fori ¢ K, and ) 4% = 1 and
(ar,d;) = 7 (a,, d;) forall k, x € K, we have

:7‘[‘A

Since z;
20
. ¢
x"may < Zmiyjﬂ',%)(aia d;) +x"Nay
4,J

XTW%)y +xTNyy.

<
Thus

)

%' Nay < x"may —x"m,y < x'Nay,

giving us our result, at least for the attacker. The analysis
for the defender follows in the same fashion. B

Proposition 6 In the general linear game, the pure strat-
egy formed by choosing (a,d) € Sy x Sp is a Nash
equilibrium if and only if

Asas + Aca. — Cy(a)

and

—Dyds — D.d. — Cp(d)

are as large as possible.



Proof: This follows immediately from the fact that the
payoff functions for the attacker and defender are

wa(a,d) = [Asas + Acae — Ca(a)]
+ [Asds + Acd]
— Asas — Acte
7p(a,d) = —[Dsds + Ded. + Cp(d)]
— [Dsas + Deac)
+ Dsas + Deae
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